A SOLUTION OF THE VOLterra EQUATION

\[f(x) = g(x) + \int_0^x k(x,t)f(t)dt \]

Ahmad Adeeb Mahmoud Obeidat, Atallah Thamer Al-Ani

Abstract: In this paper we introduce a series solution for Volterra Equation with limits of integration from 0 to \(x^n \) which is a generalization of the classical Volterra equation for \(n = 1 \).

Keywords: integral equation, Maclaurin series, Leibniz Rule, Functional-differential equations, Volterra equation

I. Introduction

The Volterra integral equation with limits of integral from 0 to \(x^n \), where \(n \) is a positive integer is of the form

\[f(x) = g(x) + \int_0^x k(x,t)f(t)dt \]

where \(g \) and \(k \) are known functions, and \(f \) is the unknown function to be found. As far as the authors know, no solution for the case of \(n > 1 \) is given. Actually for \(n = 1 \), the equation leads to a differential equation. While for \(n > 1 \) the equation leads to a functional differential equation. We assume here that the functions \(g \), \(f \), and \(k \) are analytic at 0. So, we can use the Maclaurian series technique to get our solution, namely

\[f(x) = f(0) + f'(0)\frac{x}{1!} + f''(0)\frac{x^2}{2!} + f'''(0)\frac{x^3}{3!} + ..., \]

So, our process simply, is to determine the derivatives at 0 of \(f(x) \) in terms of the derivatives at 0 of \(g(x) \) and \(k(x) \) to get the solution of

\[f(x) = g(x) + \int_0^x k(x,t)f(t)dt, \quad n > 1, \]

II Solution of the equation

\[f(x) = g(x) + \int_0^x k(x,t)f(t)dt \]

By Leibniz rule find \(f'(x), f''(x), f'''(x), \ldots \)

\[f'(x) = g'(x) + \int_0^x \frac{\partial}{\partial x} k(x,t)f(t)dt + (nx^{n-1})k(x,x^n)f(x^n) \]

\[= g'(x) + \int_0^x \frac{\partial}{\partial x} k(x,t)f(t)dt + R_1(x), \]

where

\[R_1(x) = (nx^{n-1})k(x,x^n)f(x^n), \]

\[R_1(0) = 0 \quad \text{if} \quad n > 1 \]
\[f''(x) = g''(x) + \int \frac{\partial^2}{\partial x^2} k(x,t) f(t) dt + [(2n x^{n-1}) k'(x,x^n) \\
+ n(n-1)x^{n-2} k(x,x^n)] f(x^n) + (n^2 x^{2n-2}) k(x,x^n) f'(x^n) \]

\[= g''(x) + \int \frac{\partial^2}{\partial x^2} k(x,t) f(t) dt + R_2(x) \]

Where

\[R_2(x) = [(2n x^{n-1}) k'(x,x^n) + n(n-1)x^{n-2} k(x,x^n)] f(x^n) \\
+ (n^2 x^{2n-2}) k(x,x^n) f'(x^n) \]

\[R_2(0) = 0 \quad \text{if} \quad n > 2 \]

\[f'''(x) = g'''(x) + \int \frac{\partial^3}{\partial x^3} k(x,t) f(t) dt + \frac{n(n-1)(n-2)x^{n-3}k(x,x^n)}{6} + \frac{3(n^2-1)x^{2n-2}k'(x,x^n)}{4} \]

\[+ \frac{(3n^2(n-1)x^{2n-3}k(x,x^n))}{6} + \frac{3n^2(n-1)x^{3n-3}k(x,x^n)}{6} f'(x^n) + \frac{3n^2(n-1)x^{3n-3}k(x,x^n)}{6} f''(x^n) \]

\[f'''(x) = g'''(x) + \int \frac{\partial^3}{\partial x^3} k(x,t) f(t) dt + R_2(x), \]

Where

\[R_3(x) = \frac{n(n-1)(n-2)x^{n-3}k(x,x^n)}{6} + \frac{3n^2(n-1)x^{2n-2}k'(x,x^n)}{4} \]

\[+ \frac{(3n^2(n-1)x^{2n-3}k(x,x^n))}{6} + \frac{3n^2(n-1)x^{3n-3}k(x,x^n)}{6} f'(x^n) + \frac{3n^2(n-1)x^{3n-3}k(x,x^n)}{6} f''(x^n) \]

\[R_3(0) = 0 \quad \text{if} \quad n > 3 \]

\[f^{(4)}(x) = g^{(4)}(x) + \int \frac{\partial^4}{\partial x^4} k(x,t) f(t) dt + \frac{n(n-1)(n-2)(n-3)x^{n-4}k(x,x^n)}{24} \]

\[+ \frac{(4n(n-1)(n-2)x^{n-3}k'(x,x^n)}{4} + 6n(n-1)x^{n-2}k''(x,x^n) + \frac{4n^2(n-1)x^{n-3}k'''(x,x^n)}{4} f(x^n) \]

\[+ \frac{[(n^2(n-1)(7n-11)x^{2n-4}k(x,x^n)}{4} + \frac{(12n^2(n-1)x^{2n-3}k'(x,x^n)}{4} + \frac{(6n^2(n-1)x^{2n-3}k''(x,x^n)}{4} f'(x^n) + \frac{[(6n^2(n-1)x^{3n-4}k(x,x^n)}{4} + \frac{4n^3x^{3n-3}k'(x,x^n)}{4} f''(x^n) + \frac{n^4x^{4n-3}k(x,x^n)}{4} f'''(x^n) \]

\[R_4(0) = 0 \quad \text{if} \quad n > 4 \]
\[f^{(5)}(x) = g^{(5)}(x) + \int_0^x \frac{\partial^5}{\partial x^5} k(x,t)f(t) \, dt \]
\[+ [(n(n-1)(n-2)(n-3)(n-4)x^{n-5}k(x,x')]

The general form
\[f^{(m)}(x) = g^{(m)}(x) + \int_0^x \frac{\partial^m}{\partial x^m} k(x,t)f(t) \, dt + R_m(x), \]

where,
\[R_m(x) = \sum_{j=1}^{m} \sum_{c=1}^{j} a_{mjc} p(n, j-c+1)x^{(m-j+1)n-(m-c+1)k(c-1)(x,x^n)} f^{(m-j)}(x^n), \]

where
\[a_{mjc} \text{ is real number and } p(n, j-c+1) = n(n-1)(n-2)...(n-j+c) \]
\[R_m(0) = 0, \text{ when } n > m. \text{ thus, replacing } x \text{ by } 0 \text{ we obtain} \]
\[f(0) = g(0) \]
\[f'(0) = \begin{cases} g'(0) + R_1(0), & n = 1 \\ g'(0), & n > 1 \end{cases} \]
\[f''(0) = \begin{cases} g''(0) + R_2(0), & n = 2 \\ g''(0), & n > 2 \end{cases} \]
\[f'''(0) = \begin{cases} g'''(0) + R_3(0), & n = 3 \\ g'''(0), & n > 3 \end{cases} \]
\[f^{(4)}(0) = \begin{cases} g^{(4)}(0) + R_4(0), & n = 4 \\ g^{(4)}(0), & n > 4 \end{cases} \]

The general form at \(x = 0 \) is
\[f^{(m)}(0) = \begin{cases} g^{(m)}(0) + R_m(0), & n = m \\ g^{(m)}(0), & n > m \end{cases} \]

Applying Maclaurin series
\[f(x) = f(0) + f'(0) \frac{x}{1!} + f''(0) \frac{x^2}{2!} + f'''(0) \frac{x^3}{3!} + ..., \]

So the solution...
\[f(x) = \sum_{m=1}^{\infty} \left(g^{(m)}(0) + R_m(0) \right) \frac{x^m}{m!} \]
\[= g(x) + \sum_{m=1}^{\infty} \left(R_m(0) \right) \frac{x^m}{m!} \] (6)
(7)

The solution is divided into three types at \(n = 1, n = 2 \), and \(n > 2 \). When \(n = 1 \) the solution is in the form

\[f(x) = g(x) + \sum_{m=1}^{\infty} \left[\sum_{j=1}^{m} a_{mj} k^{(m-j)}(0,0) f^{(j-1)}(0) \right] \frac{x^m}{m!}, \] (8)

where \(a_{mj} \) is a real number

which is the known solution of Volterra equation (\(n = 1 \)).

When \(n = 2 \) the solution is in the form

\[f(x) = g(x) + \sum_{j=2}^{\infty} \left[k^{(j-2)}(0,0) f(0) \right] \frac{x^j}{(j-2)!} + \sum_{m=4}^{\infty} \left[a_{m} k^{(m-4)}(0,0) f''(0) \right] \frac{x^m}{m!}, \] (9)

where \(a_m \) is a real number

When \(n > 2 \) the solution is in the form

\[f(x) = g(x) + g(0) \sum_{j=n}^{\infty} \left[k^{(j-n)}(0,0) \right] \frac{x^j}{(j-n)!} \] (10)

III. Examples

(1) The solution of the integral equation

\[f(x) = g(x) + \int_{0}^{x} k(x,t) f(t) dt, \]

\[f(x) = g(x) + g(0) \sum_{j=3}^{\infty} \left[k^{(j-3)}(0,0) \right] \frac{x^j}{(j-3)!} \]

(2) The solution of the integral equation

\[f(x) = 1 - x^3 + \int_{0}^{x} (1 - 2t^3 + x^6) f(t) dt, \]

\[f(x) = 1 \]

References

