Tribological properties of SiO$_2$/TiO$_2$ multilayer, TiO$_2$, SiO$_2$ coatings deposited on CP-Ti implant material in simulated body fluid (SBF) solution

M. Yazici *, O. Comakli , T. Yetim , A.F. Yetim , A. Celik

Abstract— In this study, the influences of different coatings on wear and scratch performances in simulated body fluid (SBF) solution were investigated. SiO$_2$/TiO$_2$ multilayer, TiO$_2$ and SiO$_2$ coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 700°C. The phase structure, crosssectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al$_2$O$_3$ ball in SBF.

Results showed that hardness, wear and adhesion resistance of multilayer coated samples were higher than untreated CP-Ti. It was found that the values of these three properties of SiO$_2$/TiO$_2$ multilayer coatings were higher than other coatings. Additionally, the lowest friction coefficient and wear rates were obtained on SiO$_2$/TiO$_2$ multilayer coatings. Therefore, it was seen that phase structure, hardness and film adhesion were important factors on the tribological properties of multilayer coatings.

Keyword — Multilayer coating; Sol-Gel; Wear; Scratch; CP-Ti

Mustafa YAZICI
Erzurum Technical University, Turkey

Onur COMAKLI
Ataturk University, Turkey

Tuba YETIM
Erzurum Technical University, Turkey

A. Fatih YETIM
Erzurum Technical University, Turkey

Ayhan CELIK
Ataturk University, Turkey