Terahertz Imaging and Broadband Wireless Communication Using Plasma Oscillations in Nanometer Field Effect Transistors

W.Knap
Charles Coulomb Laboratory, Montpellier University and CNRS, France & High Pressure Institute, Polish Academy of Sciences Warsaw, Poland

Abstract—An overview of recent results concerning THz detection related to plasma nonlinearities in nanometer field effect transistors is presented. In particular nonlinearity and dynamic range of these detectors are discussed. We present also results on THz detection by Graphene field effect transistors. As a conclusion, we will show one of the first real world application of the FET THz detectors: a demonstrator of the imager developed for fast postal security imaging and wireless communication at carrier frequency above 300GHz.

I. INTRODUCTION

We present an overview of some recent results concerning THz detection related to plasma nonlinearities in nanometer Field Effect Transistors (FETs) working as Terahertz detectors. The subjects were selected in a way to show physics related limitations and advantages rather than purely technological or engineering improvements of nanometer Field Effect Transistors (FETs) working as Terahertz detectors. We address the basic physics related problems like temperature dependence of the response [3], helicity sensitive detection [4] and nonlinear/saturation response at high incident power [5].

We present also the results on graphene based THz detectors [6-8] and first results on new THz detectors based on Si junction-less FETs [9]. The results will be discussed in view of the physical and technical limitations of Field Effect Transistors based THz detectors in view of their application for linear scanners [10].

II. DYNAMIC RANGE

Use Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm2 was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors.

The photoresponse increased linearly with increasing radiation intensity up to the kW/cm2 range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm2 – see Fig. 1. The observed photoresponse nonlinearity is explained by the saturation of the transistor channel current. The theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitatively experimental data both in linear and nonlinear (saturation) range. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ~ 0.5 mW/cm2 to ~ 5 kW/cm2).

III. GRAPHENE PLASMA THZ DETECTORS

Graphene, a one/two-atom-thick planar sheet of a honeycomb carbon crystal is a unique material with superior properties. The unusual gapless band structure of graphene...
with linear energy spectra for electrons and holes may lead to
giant carrier mobility at room temperature and broadband flat
obtional response. In combination with huge thermal
conductivity, these properties make graphene very appealing
for electronics and sensor applications, including terahertz
applications. Review of recent achievement on graphene
based terahertz devices can be found in [11].
Exfoliated on Si/SO2 single and double layer graphene flakes
were used to fabricate top gate transistors. Log-periodic
circular-toothed antennas at source and gate were used to
couple 0.3 THz radiation. A 35 nm thick HfO2 layer was used
as the gate dielectric. The channel length was 7-10 µm, while
the gate length was 200 – 300 nm. Fig. 2 shows the
responsivity as a function of gate voltage. The specific feature
of these dependencies is the change of the sign of the
response at the charge neutrality (Dirac) voltage. Similar
results were obtained at higher frequencies up to 3.11 THz for
back-gated graphene transistors [8].

Fig. 2 The conductivity and responsivity as a function of gate
voltage. The specific feature of these dependencies is the change
of the sign of the THz response at the charge neutrality (CNP) point [6,
7].

IV. DIFRACTIVE OPTICS AND POSTAL SCANNER

The active THz scanning systems present on the market
require THz radiation source with specially adapted optics [2-
4]. The first THz imaging systems were two axes raster
scanning setups containing single point source and a single
detector. They provided high quality images but the scanning
time was relatively long, mainly limited by the speed of (XY)
mechanical scanners. However, it appeared that to get the
imaging speed acceptable for practical applications like postal
security and on line nondestructive quality control so called
linear scanners can be used. In these scanners the object
moves on the transportation belt and the image is constructed
line by line using linear multi-detector system. In principle the
linear beam required in this case can be formed by a single
rotating/vibrating mirror, but this imposes the speed
limitations and long term mechanical stability of the system.

Recently diffractive elements that shape the illuminating
divergent beam coming from the point-like source into a line
segment in the given plane like shown in Fig. 3.

Fig. 3 Scheme of the optical system using diffractive elements
that shape the illuminating divergent beam coming from the point-
like source into a line segment in the given plane [10].

In particular the structure based on the cost efficient 3D
printing technology was demonstrated. The structure was
experimentally evaluated and applied in a fast on line imaging
system operating at 0.3 THz atmospheric window, like shown
in Fig 4.
This work was partially supported by the National Centre for Research and Development in Poland (grant no. PBS1/A9/11/2012), by the National Science Centre in Poland (DEC-2013/10/M/ST3/00705) and by CNRS France via LIA –TERAMIR projects.

ACKNOWLEDGEMENTS

REFERENCES

Proof. W. Knap born in Poland in 1955 obtained his master degree from Faculty of Physics – Warsaw University Poland and got a permanent assistant professor position at Experimental Solid State Physics Department. His PhD concerned the Terahertz (Far infrared) properties of narrow gap semiconductors HgTe and InSb. In 1987 he left to France and worked at University of Montpellier, Grenoble High Magnetic Field Laboratory, and Toulouse Pulsed High Magnetic Field Laboratory. In 1992 he obtained a permanent position at French National Centre for Scientific Research - CNRS – Montpellier where he works until now. Between 1999 and 2001 he worked at Renssellear Polytechnic Institute USA. He obtained also a long term grant from Japan Society of Promotion of Science and spent a year at Tohoku University 2007-2008. His main scientific interests are: i) Fair Infrared-FIR (Terahertz - THz) properties of semiconductors, ii) Quantum phenomena in transport and iii) Terahertz Plasma excitations in low dimensional structures. He is an author/co-author of more than 100 publications in highly rated international journal and his citation H factor is higher than 35.