A NEW ALGORITHM TO CONVERT DECIMAL NUMBER INTO TBNS

Piyali Biswas
Electronics and Communication Engineering
Kalyani Government Engineering College
Kalyani, Nadia, PIN-741235.India.
E-mail: piyalbiswas.kgp@gmail.com

Subhashis Maitra
Electronics and Communication Engineering
Kalyani Government Engineering College
Kalyani, Nadia, PIN-741235.India.
E-mail: subha_shis06@yahoo.co.in

Abstract—Computational complexities arise to convert any decimal number to DBNS are the most important issues to design an algorithm further for the same. Here we have introduced a new algorithm that converts any decimal number to TBNS in a simpler way. Advantages of TBNS over DBNS have been discussed. Although the material presented in this article is mainly theoretical, the proposed algorithm could lead to very efficient implementation for digital signal processing application.

Keywords—DBNS, TBNS[5], DSP[3], OSTROWSKI’S NUMBER SYSTEM[4].

I. INTRODUCTION

The Double-Base number system (DBNS), introduced by V. Dimitrov and G. A. Jullien[1] has advantages in many application like cryptography[2] and digital signal processing (DSP)[3].R. Muscedere addresses the problem of addition, subtraction and conversion from binary. Valerie Berthe and Laurent Imbert introduce the problem of converting a number from binary to DBNS using continued fraction, Ostrowski’s number system, and Diophantine approximation. The main objective of this paper is to convert any decimal number into TBNS which leads great advantages over DBNS.

In Triple Base Number System, we represent any integer in the form

\[x = \sum_{i} 2^{a_i} 3^{b_i} 5^{c_i}, \]

where, \((a_i, b_i, c_i)>0\) and \((a_i, b_i, c_i) \neq (a_j, b_j, c_j)\) if \(i \neq j\) and \(i, j\) are non-negative, independent integers.

In this paper we try to find out 3 non-negative integers \(a, b, c\) such that \(2^a 3^b 5^c \leq x\), and among the solutions to this problem, \(2^3 3^2 5\) is the largest possible value, i.e.

\[2^3 3^2 5 = \max \{ 2^d 3^e 5^f, \text{ such that } (d, e, f) \in \mathbb{N}^3, \text{ and } 2^d 3^e 5^f \leq x \}\]

(2)

If we let \((a, b, c) \in \mathbb{N}\) be such that \(2^a 3^b 5^c \leq x\), our problem can be reformulated as finding 3 non-negative integers \(a, b, c\) such that

\[a \log 2 + b \log 3 + c \log 5 \leq \log x \]

(3)

and such that, no other integers \(d, e, f \geq 0\) give a better left approximation to \(\log x\).

Let us define \(\alpha = \log 2\) and \(\beta = \log 3\) and \(\gamma = (\log 5) = \log 5 - [\log 5] \) (\(\gamma\) is the fractional part of \(\log 5\)). Then we try to find out the best left approximation to \(\log 5\) with non-negative integers. If \(a, b, c\) is the solution then, for all \((d, e, f) \in \mathbb{N}^3\), with \(a \neq d, b \neq e, c \neq f\), we have

\[(d \alpha + e \beta + f) < (a \alpha + b \beta + c) \leq \gamma + [\log 5] \]

(4)

A graphical interpretation to this problem is to consider the surface \(\Delta\) of equation \(w = -\alpha u - \beta v + \log 5\). The solutions are the points with integer coordinates, located in the area defined by the surface \(\Delta\) and the axes. The best solution is the point which gives the best approximation to \(\log 5\).

Figure1. Graphical interpretation to the problem of finding the largest 3 integer less than \(x\)
II. CONTINUED FRACTIONS AND OSTROWSKI’S NUMBER SYSTEM

A simple continued fraction can be expressed in the form
\[\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ddots}}} \]

Where the partial quotients \(a_i \) are integers \(\geq 1 \). A continued fraction is represented by the sequence \((a_n)_{n \in \mathbb{N}} \) which can either be finite or infinite.

Every irrational real number \(\alpha \) can be expressed as an infinite simple continued fraction, and can be written as \(\alpha = [a_0, a_1, a_2, a_3, \ldots] \). Similarly, every rational number can be expressed as a simple continued fraction. For example, the infinite continued fraction expansion of the irrational \(e \) is

\[e = [2, 1, 2, 1, 1, 6, 1, 1, 8, \ldots] \]

The quantity obtained by restricting the continued fractions to its first \((n+1) \) partial quotients

\[p_n/q_n = [a_0, a_1, a_2, a_3, \ldots] \]

is called the \(n \)th convergent. The series \((p_n/q_n)_{n \in \mathbb{N}} \) are computed inductively, starting with \(p_0 = 0, q_0 = 1 \), and for all \(n \in \mathbb{N} \)

\[p_{n+1} = a_{n+1}p_n + p_{n-1}, \quad q_{n+1} = a_{n+1}q_n + q_{n-1} \]

The sequence of the convergent of an infinite continued fraction gives a series of rational approximations of an irrational number. For example, the convergent of \(e \) are listed in TABLE1.

TABLE1: THE FIRST PARTIAL QUOTIENTS AND CONVERGENT OF \(e \)

<table>
<thead>
<tr>
<th>Partial Quotients</th>
<th>Convergent</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2]</td>
<td>2</td>
<td>2.00000000</td>
</tr>
<tr>
<td>[2,1]</td>
<td>3</td>
<td>3.00000000</td>
</tr>
<tr>
<td>[2,1,2]</td>
<td>8/3</td>
<td>2.666666666</td>
</tr>
<tr>
<td>[2,1,2,1]</td>
<td>11/4</td>
<td>2.75000000</td>
</tr>
</tbody>
</table>

III. DEFINITION OF THE SEQUENCE OF NON-HOMOGENEOUS BEST APPROXIMATIONS OF \(\gamma \)

Let the irrational numbers \(0 < \alpha < 1 \) and \(0 < \beta < 1 \) such that \(\alpha = [a_0, a_1, a_2, a_3, \ldots] \), \(\beta = [b_0, b_1, b_2, b_3, \ldots] \) and \(0 < \gamma < 1 \) be given. Non-homogeneous left approximations of \(\gamma \) are numbers of the form \((j \alpha + k \beta + l) \leq \gamma \), where \(j, k, l \) are integers. It is clear that there is infinitely much such approximation. We are trying to define three increasing sequences of the integers \((j_n)_{n \in \mathbb{N}}, (k_n)_{n \in \mathbb{N}}, (l_n)_{n \in \mathbb{N}} \) such that for all \(n \in \mathbb{N} \)

\[0 < j_n \alpha - 1 < j_{n+1} \alpha - 1 < \gamma \]

and, furthermore, for all \(n \), for all \(j < j_n, k < k_n, k \neq k_n, k \neq k_n \) and for all \(l \in \mathbb{Z} \) such that \(0 \leq j \beta - l \beta \leq \gamma \), then

\[0 < j \alpha - l < j_n \alpha - 1 < \gamma \]

For simplicity, \(j_n \alpha + k_n \beta - (l_n + l_{n+1}) < \gamma \)

We define for all \(n, f_n = \{ p_{n-1} \leq \gamma \} \), \(p_{n-1} = 0, \alpha = \gamma \), and for all \(n \geq 1 \)

\[f_{n+1} = f_n - a_n \alpha \]

The sequence \((f_n)_{n \in \mathbb{N}} \) is decreasing, and since \(0 < \gamma \leq 1 \), there exists a unique non-negative integer \(n \) such that \(f_n + f_{n+1} \gamma \leq f_n + f_{n+1} \)

Similarly, for all \(n, f_n = \{ q_{n-1} \leq \gamma \} \), \(q_{n-1} = 0, \beta = \gamma \), and for all \(n \geq 1 \)

\[f_{n+1} = f_n - b_n \beta \]

The sequence \((f_n)_{n \in \mathbb{N}} \) is decreasing, and since \(0 < \gamma \leq 1 \), there exists a unique non-negative integer \(n \) such that \(f_n + f_{n+1} \gamma \leq f_n + f_{n+1} \)

A. LEMMA1.

Let \(0 < \gamma < 1 \) and \(f_n \) be positive and defined in \((10)\) “(11)” “(12)” “(13)” then there exists a unique non-negative integer \(n \) a unique non-negative integer \(c \) and a unique real number \(e \) such that \(\gamma = c f_n + f_{n+1} + e \), where \(0 < e \leq f_n \leq \gamma \leq f_n + f_{n+1} \) and \(0 < \gamma \leq 1, f_n + f_{n+1} \gamma \leq f_n + f_{n+1} \)

Proof: In \(n \geq 1 \), then \(f_n + f_{n+1} \gamma \leq f_n + f_{n+1} \) and \((10) \)

\[f_n \gamma - f_{n+1} \gamma \leq f_n + f_{n+1} \gamma \]

For all \(n \), \(f_n + f_{n+1} \gamma \leq f_n + f_{n+1} \gamma \)

Proof: Assume first that \(n \) is odd, \(\gamma - \gamma (\alpha - \beta - l) \)

\[\gamma - c (q_n \alpha - p_n) \]

If \(n \) is even, \(\gamma - \gamma (\alpha - \beta - l) \)

\[\gamma - c (q_n \beta - p_n) \]

For \(n \) is even \(\gamma - \gamma (\alpha - \beta - l) \gamma - f_n \)

and thus \(0 < \gamma - (\alpha - l) \gamma < \gamma \).
IV. EXPLICIT SOLUTION OF THE NON-HOMOGENEOUS APPROXIMATION PROBLEM

To find out 3 non negative integers a, b, c such that $2^{a+b+5} \leq x$, and among the solutions to this problem, 2^{a+b} is the largest possible value, i.e.

$$2^{a+b} = \max \left\{ 2^{a+b+5}, \text{such that } (d, e, f) \in N^2, \text{and } 2^{d+5} \leq x \right\}$$

Let $(a, b, c) \in N$ be one of the solutions to the approximation problem, that is, such that $2^{a+b+5} \leq x$, clearly we have

$$a \log_2 b \log_3 c \log 5 \leq \log x$$

If $a = \log_5 2$ (a is irrational $0 < a < 1$) and $\beta = \log_5 3$ (β is irrational $0 < \beta < 1$) and $\gamma = \{\log_5 x\} = \log_5 x - \lfloor \log_5 x \rfloor$ ({x is the fractional part of $\log_5 x$}), then the problem reduces to finding the three non-negative integers a, b, c such that

$$(a + b + c) \leq \gamma + \lfloor \log_5 x \rfloor,$$

where $a \leq \lfloor \log_2 x \rfloor$, $b \leq \lfloor \log_3 x \rfloor$, $c \leq \lfloor \log_5 x \rfloor$.

We are thus looking for, $(d, e, f) \in N^2$ such that

$$j \alpha + k \beta - l \leq \gamma$$

$$j \alpha + k \beta - l = \max \left(\{p \alpha + q \beta - r\}; \text{suchthat } (p, q, r) \in N \right)$$

$p \leq \lfloor \log_2 x \rfloor$, $q \leq \lfloor \log_3 x \rfloor$, $r \leq \lfloor \log_5 x \rfloor$.

From j, k, l we easily get the non-negative exponents a, b, c by setting $a = j$, $b = k$, $c = \lfloor \log_5 x \rfloor - l$.

Example 1.

Let $x = 2758178190$. Now, we try to express three non-negative integers’ a, b, c such that 2^{a+b+5} is the largest 3-integer less than or equal to x. Let $a = \log_5 2 = 0.4306$, $\beta = \log_5 3 = 0.6826$. We have $\gamma = \{\log_5 x\} = 15.30647 \approx 0.050647$. We set $k_0 = 0$, $l_0 = 0$. The partial quotients in continued fraction expansion of a, β and corresponding convergents are given in TABLE 2.

TABLE 2. PARTIAL QUOTIENTS AND CONTINUED FRACTION EXPANSION OF α, β AND THE CORRESPONDING SEQUENCES.

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
<th>e_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4306</td>
<td>0.138646</td>
<td>0.014735</td>
<td>0.006023</td>
<td>0.002688</td>
</tr>
<tr>
<td>1</td>
<td>0.4306</td>
<td>0.138646</td>
<td>0.014735</td>
<td>0.006023</td>
<td>0.002688</td>
</tr>
<tr>
<td>2</td>
<td>0.4306</td>
<td>0.138646</td>
<td>0.014735</td>
<td>0.006023</td>
<td>0.002688</td>
</tr>
</tbody>
</table>

We get $j = 29$, $l_1 = (13-12)=1$, here we stop, because the next best left approximation would lead a negative exponent for second base $(13-15=2)$.

TABLE 3. BEST LEFT APPROXIMATION OF $\gamma = 0.50647$ WITH NUMBERS OF THE FORM $j\alpha+k\beta$.

<table>
<thead>
<tr>
<th>i</th>
<th>ϵ_i</th>
<th>n_i</th>
<th>c_i</th>
<th>$j \alpha + k \beta$</th>
<th>$\gamma - (j \alpha + k \beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50647</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0.07587</td>
</tr>
<tr>
<td>1</td>
<td>0.07587</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>0.06167</td>
</tr>
<tr>
<td>2</td>
<td>0.06167</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>0.04747</td>
</tr>
<tr>
<td>3</td>
<td>0.04747</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>0.03327</td>
</tr>
<tr>
<td>4</td>
<td>0.03327</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>0.01907</td>
</tr>
<tr>
<td>5</td>
<td>0.01907</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>0.00487</td>
</tr>
</tbody>
</table>

Let $x = 2^{14} \times 3^5$. We apply the same algorithm with the value $(x - 2^{14} \times 3^5)$ = 269858190. After completion we represent the number as

$$x = 2^{14} \times 3^5 + 2^{10} \times 3^5 + 2^6 \times 3^5 + 2^2 \times 3^5 + 2^0 \times 3^5$$

We get $k = 8$, $l_2 = (13-5)=8$, here we stop, because the next best left approximation would lead a negative exponent for second base $(13-20=-7)$.

Here, $j x + k \beta + (l_1+l_2) \leq 2 \gamma$

Thus, $a = j/2$, $b = k/2$, $c = (l_1+l_2)/2$.

From this we get $2^{14} \times 3^5$.
V. ADVANTAGES OF TBNS

The basic advantages of TBNS are

- For large values of x, the proposed algorithm is much faster. We have implemented two solutions in TABLE3 and TABLE4. Here the ratios clearly show the efficiency of proposed algorithm.
- TBNS single bit multiplication more advantageous than DBNS single bit multiplication. This may be distinguished in their multiplication unit. For example

 ![Figure2. Architecture of a DBNS Multiplier Unit (DMU)](image)

 First the indices (i, m) and (j, n) of two respective bases are added by binary adders. The result of (j + n) is stored in LUT and then shifted by (i+ m) bits in a single clock using barrel shifter. The final result stored in register. In this way DBNS multiplication is performed.

 ![Figure3. Architecture of a TBNS Multiplier Unit (TMU)](image)

 First the indices (i, m), (j, n), (k, p) of three respective bases are added by binary adders. The result of (j + n) and (k + p) are stored in LUT and then shifted by (i+ m) bits in a single clock using barrel shifter. The final result stored in register. In this way TBNS multiplication is performed.

- From Figure2 and Figure3 it is clear that for any arithmetic operation the number of hardware required in DBNS is much greater than the number of hardware required in TBNS. In case of multiplication of two numbers the number of hardware required for DBNS and TBNS are shown in TABLE5.

<table>
<thead>
<tr>
<th>TABLE5. Hardware requirement for DBNS and TBNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBNS Multiplication</td>
</tr>
<tr>
<td>LUT size (8*12)Bits</td>
</tr>
<tr>
<td>Number of multiplication units</td>
</tr>
<tr>
<td>Adder Size</td>
</tr>
<tr>
<td>Number of Adders</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

A straightforward approach to the problem of finding the largest 3-integer less than or equal to x consists in computing the distance between the surface Δ of equation $w=\alpha u - \beta v + \log_5 x$ and to keep the values (u, v, w) which lead to the smallest distance. We can consider the plane

$\Delta_1: j= - \log_5 k - \log_5 l + \log_5 x$ and keep the minimum distance. In Figure4 we have plotted the plane Δ of equation $w=0.4306u-0.6826v+13.50647$, which corresponds to the example1, together with the points we have plotted in Figure4 and those we deduce from proposed algorithm. We clearly remark that the algorithm based on continued fraction and Ostrowski’s number system [4].

![Figure4. Graphical interpretation of the problem of finding the largest 3-integer≤x=2758178190](image)
VII. REFERENCES

1211